Thursday 26 October 2017

Moving Average Signalverarbeitung


Updated 12th March 2013 Was sind RC Filtering und exponentielle Mittelung und wie unterscheiden sie sich Die Antwort auf den zweiten Teil der Frage ist, dass sie der gleiche Prozess sind Wenn man aus einem Elektronik-Hintergrund dann RC Filtering (oder RC Glättung) ist die übliche kommt Ausdruck. Auf der anderen Seite hat ein Ansatz, der auf Zeitreihenstatistik basiert, den Namen Exponential Averaging oder den vollen Namen Exponential Weighted Moving Average. Dies wird auch als EWMA oder EMA bezeichnet. Ein wesentlicher Vorteil des Verfahrens ist die Einfachheit der Formel für die Berechnung der nächsten Ausgabe. Es benötigt einen Bruchteil der vorherigen Ausgabe und einen Minus dieser Fraktion mal der Stromeingabe. Algebraisch zum Zeitpunkt k ist die geglättete Ausgabe y k gegeben durch Wie später gezeigt, hebt diese einfache Formel die jüngsten Ereignisse hervor, glättet Hochfrequenzschwankungen und zeigt langfristige Trends. Es gibt zwei Formen der exponentiellen Mittelungsgleichung, die eine oben und eine Variante Both sind richtig. Siehe die Hinweise am Ende des Artikels für weitere Details. In dieser Diskussion werden wir nur die Gleichung (1) verwenden. Die obige Formel wird manchmal in der begrenzten Weise geschrieben. Wie ist diese Formel abgeleitet und was ist ihre Interpretation Ein wichtiger Punkt ist, wie wir wählen. Um dies zu untersuchen, ist ein RC-Tiefpassfilter zu betrachten. Jetzt ist ein RC-Tiefpassfilter einfach ein Serienwiderstand R und ein Parallelkondensator C, wie unten dargestellt. Die Zeitreihengleichung für diese Schaltung ist Das Produkt RC hat Zeiteinheiten und wird als Zeitkonstante T bezeichnet. Für die Schaltung. Angenommen wir repräsentieren die obige Gleichung in ihrer digitalen Form für eine Zeitreihe, die alle h Sekunden dauert. Wir haben Dies ist genau die gleiche Form wie die vorherige Gleichung. Vergleicht man die beiden Beziehungen für a, die sich auf die sehr einfache Beziehung verringert, ergibt sich die Wahl von N, um welche Zeitkonstante wir uns entschieden haben. Nun kann Gleichung (1) als Tiefpassfilter erkannt werden, und die Zeitkonstante bezeichnet das Verhalten des Filters. Um die Bedeutung der Zeitkonstanten zu sehen, müssen wir die Frequenzcharakteristik dieses Tiefpass-RC-Filters betrachten. In seiner allgemeinen Form ist dies in E-Modul und Phase-Form haben wir, wo der Phasenwinkel ist. Die Frequenz wird als nominale Grenzfrequenz bezeichnet. Physikalisch kann gezeigt werden, daß bei dieser Frequenz die Leistung im Signal um die Hälfte reduziert wurde und die Amplitude um den Faktor verringert ist. In dB ist diese Frequenz, wo die Amplitude um 3dB reduziert wurde. Wenn die Zeitkonstante T zunimmt, nimmt die Grenzfrequenz ab, und wir wenden den Daten mehr Glättung zu, dh wir eliminieren die höheren Frequenzen. Es ist wichtig zu beachten, dass der Frequenzgang in Bogenmaß Sekunden ausgedrückt wird. Das ist es ist ein Faktor der beteiligt. Wenn beispielsweise eine Zeitkonstante von 5 Sekunden gewählt wird, ergibt sich eine effektive Grenzfrequenz von. Eine beliebte Verwendung von RC-Glättung ist die Simulation der Wirkung eines Meters, wie er in einem Schallpegelmesser verwendet wird. Diese werden typischerweise durch ihre Zeitkonstante wie beispielsweise 1 Sekunde für S-Typen und 0,125 Sekunden für F-Typen typisiert. Für diese beiden Fälle liegen die effektiven Grenzfrequenzen bei 0,16 Hz bzw. 1,27 Hz. Eigentlich ist es nicht die Zeitkonstante, die wir normalerweise wählen wollen, sondern jene Perioden, die wir einschließen möchten. Angenommen, wir haben ein Signal, wo wir Merkmale mit einer P zweiten Periode einschließen möchten. Nun ist eine Periode P eine Frequenz. Dann können wir eine Zeitkonstante T wählen. Allerdings wissen wir, dass wir etwa 30 der Ausgabe (-3dB) verloren haben. Die Wahl einer Zeitkonstante, die genau den Perioden entspricht, die wir beibehalten wollen, ist nicht das beste Schema. Es ist normalerweise besser, eine etwas höhere Grenzfrequenz zu wählen, sagen wir. Die Zeitkonstante ist dann die in der Praxis ähnelt. Dies verringert den Verlust auf etwa 15 bei dieser Periodizität. In der Praxis also, um Ereignisse mit einer Periodizität von oder größer zu halten, dann wählen Sie eine Zeitkonstante von. Dies beinhaltet die Auswirkungen der Periodizität von bis zu etwa. Zum Beispiel, wenn wir die Auswirkungen der Ereignisse, die mit sagen, eine 8-Sekunden-Periode (0,125 Hz), dann wählen Sie eine Zeitkonstante von 0,8 Sekunden. Dies ergibt eine Grenzfrequenz von ungefähr 0,2 Hz, so daß unsere 8-Sekunden-Periode im Hauptdurchlaßband des Filters gut ist. Wenn wir die Daten mit 20 mal Sekunde (h 0,05) abtasten, dann ist der Wert von N (0,8 0,05) 16 und. Dies gibt einen Einblick in die Einstellung. Grundsätzlich für eine bekannte Abtastrate bezeichnet er die Mittelungsperiode und wählt aus, welche Hochfrequenzschwankungen ignoriert werden. Mit Blick auf die Erweiterung des Algorithmus können wir sehen, dass es die neuesten Werte begünstigt, und auch, warum es als exponentielle Gewichtung bezeichnet wird. Wir haben Ersatz für y k-1 gibt Wiederholen dieses Prozesses mehrmals führt zu, weil im Bereich dann deutlich die Begriffe nach rechts kleiner werden und sich wie eine abklingende Exponential verhalten. Das ist die aktuelle Ausgabe ist auf die jüngeren Ereignisse voreingenommen, aber je größer wir wählen, desto weniger Bias. Zusammenfassend lässt sich feststellen, dass die einfache Formel die jüngsten Ereignisse hervorhebt, die die Ereignisse mit hoher Frequenz (kurzzeitig) glätten, zeigt langfristige Trends Anhang 1 8211 Alternative Formen der Gleichung Achtung Es gibt zwei Formen der exponentiellen Mittelungsgleichung, die in der Literatur vorkommen. Beide sind richtig und gleichwertig. Die erste Form, wie oben gezeigt, ist (A1) Die alternative Form ist 8230 (A2) Beachten Sie die Verwendung von in der ersten Gleichung und in der zweiten Gleichung. In beiden Gleichungen sind Werte zwischen Null und Eins. Früher wurde definiert als Jetzt wählen, um zu definieren Also die alternative Form der exponentiellen Mittelung Gleichung ist In physikalischen Begriffen bedeutet es, dass die Wahl der Form verwendet wird, hängt davon ab, wie man denken, entweder nehmen als die Rückkopplung Fraktion Gleichung (A1) oder Als den Bruchteil der Eingangsgleichung (A2). Die erste Form ist etwas weniger umständlich, wenn sie die RC-Filterbeziehung zeigt, und führt zu einem einfacheren Verständnis in Filterausdrücken. Chief Signal Processing Analyst bei Prosig Dr. Colin Mercer ist Chief Signal Processing Analyst bei Prosig und verantwortlich für die Signalverarbeitung und deren Anwendungen. Er war früher am Institute of Sound and Vibration Research (ISVR) an der Southampton University, wo er das Data Analysis Center gründete. Er ist ein Chartered Ingenieur und ein Fellow der British Computer Society. Ich denke, dass Sie den 8216p8217 zum Symbol für pi ändern möchten. Marco, danke für das Zeigen. Ich denke, dies ist einer unserer älteren Artikel, die von einem alten Textverarbeitungsdokument übertragen wurde. Offensichtlich, der Herausgeber (mir) nicht zu erkennen, dass die pi nicht korrekt transkribiert wurde. Sie wird in Kürze behoben. Es ist ein sehr guter Artikel Erklärung über die exponentielle Mittelung Ich glaube, es gibt einen Fehler in der Formel für T. Es sollte T h (N-1), nicht T (N-1) h sein. Mike, danke für das Spotting. Ich habe gerade zurück zu Dr Mercer8217s ursprünglichen technischen Hinweis in unserem Archiv und es scheint, dass es Fehler bei der Übertragung der Gleichungen auf den Blog. Wir korrigieren die Post. Danke, dass Sie uns wissen Danke Danke danken Ihnen. Sie können 100 DSP-Texte lesen, ohne etwas zu sagen, dass ein exponentieller Mittelungsfilter das Äquivalent eines R-C-Filters ist. Hmm, haben Sie die Gleichung für einen EMA-Filter richtig ist es nicht Yk aXk (1-a) Yk-1 anstatt Yk aYk-1 (1-a) Xk Alan, Beide Formen der Gleichung erscheinen in der Literatur, und Beide Formen sind korrekt, wie ich unten zeigen werde. Der Punkt, den Sie machen, ist wichtig, weil die Verwendung der alternativen Form bedeutet, dass die physikalische Beziehung mit einem RC-Filter weniger offensichtlich ist, darüber hinaus ist die Interpretation der Bedeutung eines in dem Artikel gezeigt nicht geeignet für die alternative Form. Zuerst zeigen wir, dass beide Formen korrekt sind. Die Form der Gleichung, die ich verwendet habe und die alternative Form, die in vielen Texten erscheint, ist Anmerkung in der oben habe ich Latex-1-Latex in der ersten Gleichung und Latex-2-Latex in der zweiten Gleichung verwendet. Die Gleichheit beider Formen der Gleichung wird mathematisch unterhalb der einfachen Schritte auf einmal gezeigt. Was ist nicht das gleiche ist der Wert für Latex-Latex in jeder Gleichung verwendet. In beiden Formen ist Latex-Latex ein Wert zwischen Null und Eins. Zuerst wird die Gleichung (1) umgeschrieben, indem Latex-1-Latex durch Latexlatex ersetzt wird. Dies ergibt latexyk y (1 - beta) xk Latex 8230 (1A) Jetzt definieren wir Latexbeta (1 - 2) Latex und so haben wir auch Latex 2 (1 - beta) Latex. Setzt man diese in Gleichung (1A) ein, erhält man latexyk (1 - 2) y 2xk-Latex 8230 (1B). Und schließlich wird die Reanordnung bewirkt. Diese Gleichung ist identisch mit der in Gleichung (2) angegebenen alternativen Form. Setzen Sie einfacher Latex 2 (1 - 1) Latex. In physikalischer Hinsicht bedeutet das, daß die Wahl der Form, die man verwendet, davon abhängt, wie man annehmen will, daß man entweder Latexalpha-Latex als Rückkopplungsfraktionsgleichung (1) oder als Bruchteil der Eingangsgleichung (2) annimmt. Wie oben erwähnt, habe ich die erste Form verwendet, da sie etwas weniger mühsam ist, die RC-Filterbeziehung zu zeigen, und führt zu einem einfacheren Verständnis in Filtertermen. Allerdings Auslassung der oben ist, meiner Meinung nach, ein Mangel in dem Artikel als andere Menschen könnten eine falsche Schlussfolgerung, so dass eine überarbeitete Version wird bald erscheinen. Ich habe immer darüber nachgedacht, danke für die Beschreibung so klar. Ich denke, ein anderer Grund die erste Formulierung ist schön ist Alpha-Maps zu 8216smoothness8217: eine höhere Auswahl an Alpha bedeutet eine 8216more smooth8217 Ausgabe. Michael Vielen Dank für die Beobachtung 8211 Ich werde den Artikel etwas auf diese Zeilen hinzufügen, da es immer besser in meiner Sicht auf physische Aspekte beziehen. Dr Mercer, Ausgezeichneter Artikel, danke. Ich habe eine Frage bezüglich der Zeitkonstante, wenn sie mit einem RMS-Detektor wie in einem Schallpegelmesser verwendet wird, auf den Sie in dem Artikel verweisen. Wenn ich Ihre Gleichungen verwenden, um einen exponentiellen Filter mit Zeitkonstanten 125ms zu modellieren und ein Eingangsschrittsignal zu verwenden, bekomme ich tatsächlich einen Ausgang, der nach 125ms 63,2 des Endwertes ist. Jedoch wenn ich das Eingangssignal quadriere und dieses durch den Filter stelle, sehe ich, daß ich die Zeitkonstante verdoppeln muß, damit das Signal 63.2 seines Endwertes in 125ms erreicht. Können Sie mir mitteilen, ob dies erwartet wird. Danke vielmals. Ian Ian, Wenn Sie ein Signal wie ein Sinus-Welle dann im Grunde Sie verdoppeln die Häufigkeit ihrer grundlegenden sowie die Einführung von vielen anderen Frequenzen. Da die Frequenz in Wirklichkeit verdoppelt worden ist, wird sie um 8216 um einen grßeren Betrag durch das Tiefpaßfilter verringert. Infolgedessen dauert es länger, die gleiche Amplitude zu erreichen. Die Quadrierung Operation ist eine nicht lineare Operation, so glaube ich nicht, dass es immer doppelt genau in allen Fällen, aber es wird dazu neigen, zu verdoppeln, wenn wir eine dominante niedrige Frequenz haben. Beachten Sie auch, dass die Differenz eines quadrierten Signals das Doppelte des Differentials des 8220un-squared8221 Signals ist. Ich vermute, Sie könnten versuchen, eine Form der mittleren quadratischen Glättung, die vollkommen in Ordnung und gültig ist zu bekommen. Es könnte besser sein, den Filter anzuwenden und dann quadratisch, wie Sie die effektive Cutoff kennen. Aber wenn alles, was Sie haben, ist das quadrierte Signal dann mit einem Faktor von 2, um Ihre Filter-Alpha-Wert ändern wird etwa erhalten Sie zurück auf die ursprüngliche Cut Off-Frequenz, oder setzen Sie es ein wenig einfacher definieren Sie Ihre Cutoff-Frequenz auf das Doppelte des Originals. Vielen Dank für Ihre Antwort Dr. Mercer. Meine Frage war wirklich versuchen, zu bekommen, was tatsächlich in einem rms Detektor eines Schallpegelmessgerät getan. Wenn die Zeitkonstante für 8216fast8217 (125ms) eingestellt ist, hätte ich gedacht, dass Sie intuitiv erwarten würden, dass ein sinusförmiges Eingangssignal einen Ausgang von 63.2 seines Endwertes nach 125ms erzeugt, aber da das Signal quadriert wird, bevor es an die 8216mean8217 gelangt Erkennung, es dauert doppelt so lange wie Sie erklärt haben. Das Hauptziel des Artikels ist es, die Äquivalenz der RC-Filterung und exponentielle Mittelung zu zeigen. Wenn wir die Integrationszeit äquivalent zu einem echten rechteckigen Integrator diskutieren, dann sind Sie richtig, dass es einen Faktor von zwei beteiligt ist. Grundsätzlich, wenn wir einen echten rechtwinkligen Integrator haben, der für Ti Sekunden integriert, ist die äquivalente RC-Integatorzeit, um dasselbe Ergebnis zu erzielen, 2RC Sekunden. Ti unterscheidet sich von der RC 8216zeit constant8217 T, die RC ist. Also, wenn wir eine 8216Fast8217 Zeitkonstante von 125 ms haben, das ist RC 125 msec, dann ist das äquivalent zu einer echten Integrationszeit von 250 msec Vielen Dank für den Artikel, es war sehr hilfreich. Es gibt einige neuere Arbeiten in der Neurowissenschaften, die eine Kombination von EMA-Filtern (kurzfensternde EMA 8211 langfaserige EMA) als Bandpassfilter für die Echtzeit-Signalanalyse verwenden. Ich möchte sie anwenden, aber ich kämpfe mit den Fenstergrößen, die verschiedene Arbeitsgruppen verwendet haben, und ihre Entsprechung mit der Grenzfrequenz. Let8217s sagen, ich möchte alle Frequenzen unter 0,5 Hz (aprox) zu halten, und dass ich 10 Proben zweiten zu erwerben. Das bedeutet, dass fp 0.5Hz P 2s T P 100.2 h 1 fs0.1 Die Fenstergröße I sollte mit N3 verwendet werden. Ist diese Argumentation richtig Vor der Beantwortung Ihrer Frage muss ich kommentieren die Verwendung von zwei Hochpass-Filter, um ein Bandpassfilter zu bilden. Vermutlich arbeiten sie als zwei getrennte Ströme, so ist ein Ergebnis der Inhalt von sagen, latexf Latex zu halben Sample-Rate und der andere ist der Inhalt von sagen, latexf Latex auf halbe Sample-Rate. Wenn alles, was getan wird, die Differenz der mittleren quadratischen Ebenen als Angabe der Leistung in der Band aus latexf Latex zu latexf Latex dann kann es sinnvoll sein, wenn die beiden abgeschnittenen Frequenzen sind ausreichend weit auseinander, aber ich erwarte, dass die Menschen mit dieser Technik Versuchen, ein schmaleres Bandfilter zu simulieren. Aus meiner Sicht wäre das für eine ernsthafte Arbeit unzuverlässig und würde eine Quelle der Besorgnis sein. Nur als Referenz ist ein Bandpassfilter eine Kombination eines Niederfrequenz-Hochpassfilters, um die niedrigen Frequenzen zu entfernen, und ein Hochfrequenz-Tiefpaßfilter, um die hohen Frequenzen zu entfernen. Es gibt natürlich eine Tiefpaßform eines RC-Filters und damit eine entsprechende EMA. Vielleicht aber mein Urteil ist überkritisch, ohne zu wissen, alle Fakten So könnten Sie bitte senden Sie mir einige Verweise auf die Studien, die Sie erwähnt, so kann ich Kritik als angemessen. Vielleicht verwenden sie einen Tiefpass sowie ein Hochpassfilter. Ich denke, es ist am besten, die grundlegende Gleichung T (N-1) h verwenden, um Ihre tatsächliche Frage, wie zu bestimmen N für eine bestimmte Ziel-Cut-off-Frequenz. Die Diskussion über die Perioden zielte darauf ab, den Menschen ein Gefühl dafür zu geben, was vor sich ging. Also bitte die Ableitung unten. Wir haben die Beziehungen latexT (N-1) h Latex und latexT1 2 Latex, wobei latexfc Latex die nominale Grenzfrequenz und h ist die Zeit zwischen den Proben, Klar latexh 1 Latex, wo latexfs Latex ist die Sample Rate in Proben sek. Die Umwandlung von T (N-1) h in eine geeignete Form, um die Grenzfrequenz, den latexfc-Latex und die Abtastrate, latexf-Latex, einzuschließen, wird nachfolgend gezeigt. Also mit latexfc 0.5Hz Latex und latexfs 10 Latex-Samples sec, so dass Latex (fc fs) 0,05 Latex gibt Also der nächste Integer-Wert ist 4. Re-Arrangierung der oben haben wir So mit N4 haben wir latexfc 0.5307 Hz Latex. Unter Verwendung von N3 ergibt sich ein Latexfc-Latex von 0,318 Hz. Hinweis mit N1 haben wir eine komplette Kopie ohne Filterung. Moving Average Filter (MA Filter) Loading. Der gleitende Mittelwertfilter ist ein einfaches Tiefpassfilter (Finite Impulse Response), das üblicherweise zum Glätten eines Arrays von abgetastetem Datensignal verwendet wird. Es benötigt M Abtastwerte von Eingang zu einem Zeitpunkt und nimmt den Durchschnitt dieser M-Abtastungen und erzeugt einen einzigen Ausgangspunkt. Es ist eine sehr einfache LPF (Low Pass Filter) Struktur, die praktisch für Wissenschaftler und Ingenieure, um unerwünschte laute Komponente aus den beabsichtigten Daten zu filtern kommt. Mit zunehmender Filterlänge (Parameter M) nimmt die Glätte des Ausgangs zu, während die scharfen Übergänge in den Daten zunehmend stumpf werden. Dies impliziert, dass dieses Filter eine ausgezeichnete Zeitbereichsantwort, aber einen schlechten Frequenzgang aufweist. Der MA-Filter erfüllt drei wichtige Funktionen: 1) Es benötigt M Eingangspunkte, berechnet den Mittelwert dieser M-Punkte und erzeugt einen einzelnen Ausgangspunkt 2) Aufgrund der Berechnungen. Führt das Filter eine bestimmte Verzögerung ein 3) Das Filter wirkt als ein Tiefpaßfilter (mit einer schlechten Frequenzbereichsantwort und einer guten Zeitbereichsantwort). Matlab-Code: Der folgende Matlab-Code simuliert die Zeitbereichsantwort eines M-Point Moving Average Filters und zeigt auch den Frequenzgang für verschiedene Filterlängen. Time Domain Response: Auf dem ersten Plot haben wir die Eingabe, die in den gleitenden Durchschnitt Filter geht. Der Eingang ist laut und unser Ziel ist es, den Lärm zu reduzieren. Die nächste Abbildung ist die Ausgangsantwort eines 3-Punkt Moving Average Filters. Es kann aus der Figur abgeleitet werden, daß der 3-Punkt-Moving-Average-Filter nicht viel getan hat, um das Rauschen herauszufiltern. Wir erhöhen die Filterabgriffe auf 51 Punkte und wir können sehen, dass sich das Rauschen im Ausgang stark reduziert hat, was in der nächsten Abbildung dargestellt ist. Wir erhöhen die Anzapfungen weiter auf 101 und 501, und wir können beobachten, dass auch wenn das Rauschen fast Null ist, die Übergänge drastisch abgebaut werden (beobachten Sie die Steilheit auf beiden Seiten des Signals und vergleichen Sie sie mit dem idealen Ziegelwandübergang Unser Eingang). Frequenzgang: Aus dem Frequenzgang kann behauptet werden, dass der Roll-off sehr langsam ist und die Stopbanddämpfung nicht gut ist. Bei dieser Stoppbanddämpfung kann klar sein, dass der gleitende Durchschnittsfilter kein Frequenzband von einem anderen trennen kann. Wie wir wissen, führt eine gute Leistung im Zeitbereich zu einer schlechten Leistung im Frequenzbereich und umgekehrt. Kurz gesagt, ist der gleitende Durchschnitt ein außergewöhnlich guter Glättungsfilter (die Aktion im Zeitbereich), aber ein außergewöhnlich schlechtes Tiefpaßfilter (die Aktion im Frequenzbereich) Externe Links: Empfohlene Bücher: Primäre Seitenleiste

No comments:

Post a Comment